

Title | A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks. |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | VanArsdale, E, Hörnström, D, Sjöberg, G, Järbur, I, Pitzer, J, Payne, GF, van Maris, AJA, Bentley, WE |
Journal | ACS Synth Biol |
Date Published | 2020 Apr 02 |
ISSN | 2161-5063 |
Abstract | There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synthetic biology-electrochemical axis in which engineered cells process molecular cues, producing an output that can be directly recorded via electronics-but without the need for added redox mediators. The process is robust; two key components must act together to provide a valid signal. The system builds on the tyrosinase-mediated conversion of tyrosine to L-DOPA and L-DOPAquinone, which are both redox active. "Catalytic" transducer cells provide for signal-mediated surface expression of tyrosinase. Additionally, "reagent" transducer cells synthesize and export tyrosine, a substrate for tyrosinase. In cocultures, this system enables real-time electrochemical transduction of cell activating molecular cues. To demonstrate, we eavesdrop on quorum sensing signaling molecules that are secreted by , -(3-oxododecanoyl)-l-homoserine lactone and pyocyanin. |
DOI | 10.1021/acssynbio.9b00469 |
Alternate Journal | ACS Synth Biol |
PubMed ID | 32208720 |