CAGI4 Crohn's exome challenge: Marker SNP versus exome variant models for assigning risk of Crohn disease.

Printer-friendly versionPrinter-friendly versionPDF versionPDF version
TitleCAGI4 Crohn's exome challenge: Marker SNP versus exome variant models for assigning risk of Crohn disease.
Publication TypeJournal Article
Year of Publication2017
AuthorsPal, LR, Kundu, K, Yin, Y, Moult, J
JournalHum Mutat
Date Published2017 May 16
ISSN1098-1004
Abstract

Understanding the basis of complex trait disease is a fundamental problem in human genetics. The CAGI Crohn's Exome challenges are providing insight into the adequacy of current disease models by requiring participants to identify which of a set of individuals has been diagnosed with the disease, given exome data. For the CAGI4 round, we developed a method that used the genotypes from exome sequencing data only to impute the status of Genome Wide Association Studies (GWAS) marker single nucleotide polymorphisms (SNPs). We then used the imputed genotypes as input to several machine learning methods that had been trained to predict disease status from marker SNP information. We achieved the best performance using Naïve Bayes and with a consensus machine learning method, obtaining an area under the curve (AUC) of 0.72, larger than other methods used in CAGI4. We also developed a model that incorporated the contribution from rare missense variants in the exome data, but this performed less well. Future progress is expected to come from the use of whole genome data rather than exomes. This article is protected by copyright. All rights reserved.

DOI10.1002/humu.23256
Alternate JournalHum. Mutat.
PubMed ID28512778