Structure-based design of hepatitis C virus E2 glycoprotein improves serum binding and cross-neutralization.

<table>
<thead>
<tr>
<th>Title</th>
<th>Structure-based design of hepatitis C virus E2 glycoprotein improves serum binding and cross-neutralization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2020</td>
</tr>
<tr>
<td>Authors</td>
<td>Pierce, BG, Keck, Z-Y, Wang, R, Lau, P, Garagusi, K, Elkholy, K, Toth,</td>
</tr>
<tr>
<td>Journal</td>
<td>J Virol</td>
</tr>
<tr>
<td>Date Published</td>
<td>2020 Sep 02</td>
</tr>
<tr>
<td>ISSN</td>
<td>1098-5514</td>
</tr>
<tr>
<td>Abstract</td>
<td>An effective vaccine for hepatitis C virus (HCV) is a major unmet need. Envelope glycoproteins can be used to modulate E2 antigenicity and optimize a vaccine for this challenging viral target.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1128/JVI.00704-20</td>
</tr>
<tr>
<td>Alternate Journal</td>
<td>J Virol</td>
</tr>
<tr>
<td>PubMed ID</td>
<td>32878891</td>
</tr>
</tbody>
</table>