Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP.

<table>
<thead>
<tr>
<th>Title</th>
<th>Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2021</td>
</tr>
<tr>
<td>Authors</td>
<td>Valencia, SM, Zacharia, A, Marin, A, Matthews, RL, Wu, C-K, Myers, B</td>
</tr>
<tr>
<td>Journal</td>
<td>Hum Vaccin Immunother</td>
</tr>
<tr>
<td>Pagination</td>
<td>1-14</td>
</tr>
<tr>
<td>Date Published</td>
<td>2021 Feb 11</td>
</tr>
<tr>
<td>ISSN</td>
<td>2164-554X</td>
</tr>
<tr>
<td>Abstract</td>
<td>Current human papillomavirus (HPV) vaccines provide substantial protection against the most common HPV types responsible for cervical cancer, but they do not address the additional cancers associated with HPV infection. There is an urgent need to develop and test next-generation HPV vaccines that are more effective and/or dose-sparing, with the establishment of longer-lasting humoral responses to HPV.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1080/21645515.2021.1875763</td>
</tr>
<tr>
<td>Alternate Journal</td>
<td>Hum Vaccin Immunother</td>
</tr>
<tr>
<td>PubMed ID</td>
<td>33573433</td>
</tr>
</tbody>
</table>