Optimization of virus imprinting methods to improve selectivity and reduce nonspecific binding.

<table>
<thead>
<tr>
<th>Title</th>
<th>Optimization of virus imprinting methods to improve selectivity and reduce nonspecific binding.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2007</td>
</tr>
<tr>
<td>Authors</td>
<td>Bolisay, LD, Culver, JN, Kofinas, P</td>
</tr>
<tr>
<td>Journal</td>
<td>Biomacromolecules</td>
</tr>
<tr>
<td>Volume</td>
<td>8</td>
</tr>
<tr>
<td>Issue</td>
<td>12</td>
</tr>
<tr>
<td>Pagination</td>
<td>3893-9</td>
</tr>
<tr>
<td>Date Published</td>
<td>2007 Dec</td>
</tr>
<tr>
<td>ISSN</td>
<td>1526-4602</td>
</tr>
<tr>
<td>Keywords</td>
<td>Binding Sites, Molecular Imprinting, Tobacco Mosaic Virus</td>
</tr>
<tr>
<td>Abstract</td>
<td>Molecular imprinting is a technique that creates synthetic materials containing highly specific receptor sites that have a high affinity to the imprinting factor of interest and low affinity to other compounds of interest.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1021/bm7008526</td>
</tr>
<tr>
<td>Alternate Journal</td>
<td>Biomacromolecules</td>
</tr>
<tr>
<td>PubMed ID</td>
<td>17999463</td>
</tr>
</tbody>
</table>