An artificially evolved albumin binding module facilitates chemical shift epitope mapping of GA domain interactions with phylogenetically diverse albumins.
<table>
<thead>
<tr>
<th>Title</th>
<th>An artificially evolved albumin binding module facilitates chemical shift epitope mapping of GA domain interactions with phylogenetically diverse albumins.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2007</td>
</tr>
<tr>
<td>Authors</td>
<td>He, Y, Chen, Y, Rozak, DA, Bryan, PN, Orban, J</td>
</tr>
<tr>
<td>Journal</td>
<td>Protein Sci</td>
</tr>
<tr>
<td>Volume</td>
<td>16</td>
</tr>
<tr>
<td>Issue</td>
<td>7</td>
</tr>
<tr>
<td>Pagination</td>
<td>1490-4</td>
</tr>
<tr>
<td>Date Published</td>
<td>2007 Jul</td>
</tr>
<tr>
<td>ISSN</td>
<td>0961-8368</td>
</tr>
<tr>
<td>Keywords</td>
<td>Amino Acid Sequence, Animals, Bacterial Proteins, Humans, Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>Abstract</td>
<td>Protein G-related albumin-binding (GA) modules occur on the surface of numerous Gram-positive bacterial pathogens and are known to mediate host-pathogen interactions. In this study, we have genetically engineered a new albumin binding module that is capable of interacting with both human and bovine albumins. This module, which we refer to as the “evolved albumin binding module” (EABM), consists of a single domain that is capable of binding albumins from different species. The EABM is stable and retains the ability to mediate host-pathogen interactions. The EABM may be generally useful in NMR structural studies of other protein-protein complexes.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1110/ps.072799507</td>
</tr>
<tr>
<td>Alternate Journal</td>
<td>Protein Sci.</td>
</tr>
<tr>
<td>PubMed ID</td>
<td>17567743</td>
</tr>
<tr>
<td>PubMed Central ID</td>
<td>PMC2206689</td>
</tr>
</tbody>
</table>
| Grant List | 1S10RR15744 / RR / NCRR NIH HHS / United States
GM62154 / GM / NIGMS NIH HHS / United States |