Association between Archaeal prolyl- and leucyl-tRNA synthetases enhances tRNA(Pro) aminoacylation.
Association between Archaeal prolyl- and leucyl-tRNA synthetases enhances tRNA(Pro) aminoacylation.

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetases. The presence of this complex in S. solfataricus suggests that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.

Amino Acyl-tRNA Synthetases, Chromatography, Chromatography, Methylation

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetases. The presence of this complex in S. solfataricus suggests that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.

10.1074/jbc.M503539200

Amino Acyl-tRNA Synthetases, Chromatography, Chromatography, Methylation

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetases. The presence of this complex in S. solfataricus suggests that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.

10.1074/jbc.M503539200

Amino Acyl-tRNA Synthetases, Chromatography, Chromatography, Methylation

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetases. The presence of this complex in S. solfataricus suggests that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.

10.1074/jbc.M503539200

Amino Acyl-tRNA Synthetases, Chromatography, Chromatography, Methylation

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetases. The presence of this complex in S. solfataricus suggests that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.

10.1074/jbc.M503539200

Amino Acyl-tRNA Synthetases, Chromatography, Chromatography, Methylation

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetases. The presence of this complex in S. solfataricus suggests that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.

10.1074/jbc.M503539200

Amino Acyl-tRNA Synthetases, Chromatography, Chromatography, Methylation

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetases. The presence of this complex in S. solfataricus suggests that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.

10.1074/jbc.M503539200

Amino Acyl-tRNA Synthetases, Chromatography, Chromatography, Methylation

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been reported in archaea. We report the identification of a novel archaeal prolyl-tRNA synthetase (ProRS) complex in Sulfolobus solfataricus, which contains a prolyl-tRNA synthetase (ProRS) and a leucyl-tRNA synthetase (LeuRS). This complex is unique in that it contains two distinct tRNA synthetases specific for different aminoacyl-tRNA synthetases. The presence of this complex in S. solfataricus suggests that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.