Structure-based design of a T-cell receptor leads to nearly 100-fold improvement in binding affinity for pepMHC.
Structure-based design of a T-cell receptor leads to nearly 100-fold improvement in binding affinity for pepMHC.

T-cell receptors (TCRs) are proteins that recognize peptides from foreign proteins bound to the major histocompatibility complex (MHC). In this study, Haidar et al. from the University of California and Stanford University in the United States employed structure-based design to improve TCR binding. They combined algorithms and kinetic measurements to optimize the TCR for better binding to the pepMHC complex. As a result, the mutant TCR binds the pepMHC 99 times more strongly compared to the wild-type TCR. This advancement could enhance the specificity and efficiency of T-cell mediated immune responses.

Abstract:

T-cell receptors (TCRs) are proteins that recognize peptides from foreign proteins bound to the major histocompatibility complex (MHC). In this study, Haidar et al. from the University of California and Stanford University in the United States employed structure-based design to improve TCR binding. They combined algorithms and kinetic measurements to optimize the TCR for better binding to the pepMHC complex. As a result, the mutant TCR binds the pepMHC 99 times more strongly compared to the wild-type TCR. This advancement could enhance the specificity and efficiency of T-cell mediated immune responses.

DOI: 10.1002/prot.22203

T-cell receptors (TCRs) are proteins that recognize peptides from foreign proteins bound to the major histocompatibility complex (MHC). In this study, Haidar et al. from the University of California and Stanford University in the United States employed structure-based design to improve TCR binding. They combined algorithms and kinetic measurements to optimize the TCR for better binding to the pepMHC complex. As a result, the mutant TCR binds the pepMHC 99 times more strongly compared to the wild-type TCR. This advancement could enhance the specificity and efficiency of T-cell mediated immune responses.

DOI: 10.1002/prot.22203