
Title

Publication Type
Journal Article

Year of Publication
2017

Authors
Klontz, EH, Tomich, AD, Günther, S, Lemkul, JA, Deredge, D, Silverstein, Z, Shaw, JAF, McElheny, C

Journal
Antimicrob Agents Chemother

Date Published
2017 Sep 05

ISSN
1098-6596

Abstract
Fosfomycin exhibits broad-spectrum antibacterial activity, and is being re-evaluated for the treatment of extensively drug-resistant Gram-negative bacteria. However, the mechanism of fosfomycin resistance in these clinically relevant pathogens remains poorly understood. Using an integrating approach, we have discovered that wild-type K. pneumoniae and Escherichia coli mutants harboring a single nucleotide change in fosA exhibit fosfomycin resistance. These results show that fosA-mediated fosfomycin resistance in K. pneumoniae and E. coli is due to a single nucleotide change, and provide the opportunity to develop new strategies to inhibit FosA and potentiate fosfomycin activity.

DOI
10.1128/AAC.01572-17

Alternate Journal

PubMed ID
28874374