Zika virus NS5 protein antagonizes type I interferon production via blocking TBK1 activation.

<table>
<thead>
<tr>
<th>Title</th>
<th>Zika virus NS5 protein antagonizes type I interferon production via blocking TBK1 activation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2019</td>
</tr>
<tr>
<td>Authors</td>
<td>Lin, S, Yang, S, He, J, Guest, JD, Ma, Z, Yang, L, Pierce, BG, Tang, Q,</td>
</tr>
<tr>
<td>Journal</td>
<td>Virology</td>
</tr>
<tr>
<td>Volume</td>
<td>527</td>
</tr>
<tr>
<td>Pagination</td>
<td>180-187</td>
</tr>
<tr>
<td>Date Published</td>
<td>2019 Jan 15</td>
</tr>
<tr>
<td>ISSN</td>
<td>1096-0341</td>
</tr>
<tr>
<td>Abstract</td>
<td>Zika virus (ZIKV) is a mosquito-borne positive-sense single-stranded RNA virus in the family of Flaviviridae. Unlike other flaviviruses, ZIKV is known for its ability to cause severe neurological disorders and congenital malformations. In this study, we aimed to elucidate the mechanism of ZIKV evasion of IFN-mediated innate immunity. We found that the NS5 protein of ZIKV antagonizes type I interferon production via blocking TBK1 activation. Our results provide insights into the pathogenesis of ZIKV infection and the development of antiviral strategies.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1016/j.virol.2018.11.009</td>
</tr>
<tr>
<td>Alternate Journal</td>
<td>Virology</td>
</tr>
<tr>
<td>PubMed ID</td>
<td>30530224</td>
</tr>
</tbody>
</table>