Antigenicity and Immunogenicity of Differentially Glycosylated HCV E2 Envelope Proteins Expressed in Mammalian and Insect Cells.

<table>
<thead>
<tr>
<th>Title</th>
<th>Antigenicity and Immunogenicity of Differentially Glycosylated HCV E2 Envelope Proteins Expressed in Mammalian and Insect Cells.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2019</td>
</tr>
<tr>
<td>Journal</td>
<td>J Virol</td>
</tr>
<tr>
<td>Date Published</td>
<td>2019 Jan 16</td>
</tr>
<tr>
<td>ISSN</td>
<td>1098-5514</td>
</tr>
<tr>
<td>Abstract</td>
<td>Development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the view that the envelope proteins of HCV, E1 and E2, are major immunogens. Mammalian cell expression systems have traditionally been used to produce these molecules for use in both research and clinical vaccine studies. However, the high levels of glycosylation in mammalian cell-synthesized proteins can affect specificities and activities of eukaryotic origins of transcribed and translated (eukaryotic) proteins. A more productive approach for vaccine development may be complete deletion of specific glycans in the E2 protein.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1128/JVI.01403-18</td>
</tr>
<tr>
<td>PubMed ID</td>
<td>30651366</td>
</tr>
</tbody>
</table>