Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification.

<table>
<thead>
<tr>
<th>Title</th>
<th>Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2019</td>
</tr>
<tr>
<td>Authors</td>
<td>Kang, M, Mun, CW, Jung, H S, Ansah, I Baffour, Kim, E, Yang, H, Payne</td>
</tr>
<tr>
<td>Journal</td>
<td>Nanoscale</td>
</tr>
<tr>
<td>Date Published</td>
<td>2019 Dec 03</td>
</tr>
<tr>
<td>ISSN</td>
<td>2040-3372</td>
</tr>
<tr>
<td>Abstract</td>
<td>Nanostructured materials offer the potential to drive future developments in electrochemical applications by engineering the reaction pathway within the nanoscale cavities of the materials.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1039/c9nr08136d</td>
</tr>
<tr>
<td>Alternate Journal</td>
<td>Nanoscale</td>
</tr>
<tr>
<td>PubMed ID</td>
<td>31793610</td>
</tr>
</tbody>
</table>