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Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps
between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular
NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability
densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates
to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method,
based on the average behavior of Poisson-gap sampling, which performs comparably to its random coun-
terpart with the additional benefit of completely deterministic behavior. We also introduce a general
algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a
deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-
gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation
value of their sampling probability densities.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The use of nonuniform sampling (NUS) in multidimensional
NMR is rapidly becoming standard practice in most biomolecular
solution-state experiments, thanks in large part to recent develop-
ments in fast reconstruction algorithms, novel sampling schemes,
and the continually declining cost of computing power [1]. The
potential benefits of collecting a subset of the full Nyquist grid –
including increased sensitivity and signal-to-noise, improved reso-
lution, and reduced experiment time – have received significant
attention [2–6] in recent years as a consequence.

One intriguing result of recent investigations into the parame-
ters of NUS experiments is the use of random deviates for generat-
ing sampling schedules [7]. In fully random sampling schemes, a
subset of Nyquist grid points are drawn from a probability density
function that varies over the grid, producing a sampling schedule
with a desired distribution of points. Common fully random sam-
pling schemes utilize uniform, exponential, Gaussian and
envelope-matched probability densities [3,8]. While randomiza-
tion is a simple means of reducing the artifacts due to aliasing of
nonuniformly spaced samples, it turns the already complex task
of schedule generation into that of selecting a schedule from an
ensemble of possibilities, each of which performs differently in
practice [9,10]. Several ad hoc metrics have been proposed to
assess relative performance of sampling schedules, but no univer-
sally accepted metric exists to guide the selection of a stochastic
schedule from its ensemble [10,11]. Without a priori knowledge
of the frequency and decay rate distributions of the signals to be
measured, it is difficult to reliably quantify sampling schedule per-
formance [1,8]. As a result, numerous recent attempts have been
made to reduce or remove pseudorandom seed-dependent vari-
ability from nonuniform sampling algorithms [9,10,12,13]. Such
efforts are an important step towards increasing the practical
utility of nonuniform sampling in everyday spectroscopic
experiments.

A prominent method designed to reduce seed-dependent vari-
ability in pseudorandomly constructed schedules is Poisson-gap
sampling. Through an empirical analysis of Forward Maximum
Entropy (FM) reconstructions of randomly sampled data, Hyberts
et al. proposed the use of constrained Poisson random deviates
to define the gaps between sampled points in a Nyquist grid [9].
The FM reconstruction residuals of these so-named Poisson-gap
schedules exhibited a markedly lower dependence on seed value
than unconstrained random sampling methods. While Poisson-
gap sampling yields high-quality reconstructions of NUS spectral
data, its average behavior is not well-understood, its implementa-
tion for multidimensional Nyquist grids is unclear [14–16], and its
relationship – if any – to fully random sampling is unknown. To
meet this need, we describe in detail the deterministic generation
of sinusoidally weighted multidimensional gap schedules that
model the average behavior of stochastic Poisson-gap (PG)
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sampling. We also derive an expectation sampling probability
distribution that describes the average weighting obtained using
Poisson-gap sampling schedules.

Among the myriad of different sampling schemes proposed for
NUS data collection [17], burst-mode sampling similarly concerns
itself with gaps between sampled grid points. Unlike Poisson-gap
sampling, which aims to minimize the length of gaps, burst-mode
sampling aims to minimize the number of gaps while keeping the
effective dwell time low [18]. We leverage the complementarity
of burst-mode and Poisson-gap sampling in our deterministic gap
sampling algorithm to describe a novel sampling scheme that
simultaneously seeks to bias sample collection to early times, min-
imize the number of long gaps between densely sampled regions,
and minimize the largest gap length in the schedule. Our new
method, called sine-burst (SB) sampling, exhibits the high perfor-
mance of Poisson-gap sampling while retaining the bijective map-
ping between inputs and outputs offered by deterministic methods.

2. Theory

2.1. Poisson-gap sequences

Gap schedules on a one-dimensional Nyquist grid are effec-
tively finite integer sequences, computed from the following recur-
rence relation:

xiþ1 ¼ xi þ bgðxiÞc þ 1 ð1Þ
where xi is the grid index of the i-th term in the sequence and gðxiÞ
is the ‘‘gap equation” that defines the distance between terms. The
first term in the sequence, x1, is set to 1, and subsequent terms are
computed until their value exceeds N, the size of the grid. The gap
equation gðxÞ may be any non-negative function, and may be
loosely interpreted as inversely related to the local sampling den-
sity at the grid index xi. Thus, when the gap equation equals zero
for all grid indices, gap sampling will yield a uniformly sampled
grid.

Poisson-gap sequences treat the gap equation as a Poisson ran-
dom deviate having a rate parameter that varies as either a
quarter- or half-sinusoid over the grid indices:

gPGðxiÞ � Pois K sin
p
2
hi

� �n o
ð2Þ

where K is a scaling factor that determines the global sampling den-
sity and hi is the fractional grid index that varies from 0 to 1 over the
grid extents:

hi ¼ xi
N

ð3Þ

In all following descriptions of Poisson-gap methods, we shall
restrict our attention to rate parameters which vary as quarter-
sinusoids, where the fractional grid index is multiplied by a factor
of one-half p. This choice of sinusoidal weight produces schedules
which are heavily biased to earlier grid points. Using a factor of p
produces half-sinusoidal rate parameters and schedules that are
more densely sampled at both early and late grid points.

Because the expected value of a Poisson distribution is equal to
its rate parameter, we may trivially construct a deterministic sinu-
soidally weighted gap sampler (sine-gap; SG) by setting the gap
equation equal to the scaled quarter-sinusoid from Eq. (2), as
follows:

gSGðxiÞ ¼ K sin
p
2
hi

� �
ð4Þ

By construction, gap sampling schedules computed according to
gSG will describe the average behavior of gPG. This is easily verified
in one dimension by generating a sufficiently large set of stochastic
Poisson-gap schedules and comparing the mean value of each
sequence term to that of a sine-gap schedule (cf. Supplementary
Methods and Fig. S-1). Sine-gap schedules lie centrally within the
Poisson-gap ensemble, while other schedules unrelated to
Poisson-gap deviate substantially from the confidence region of
the ensemble.
2.2. Multidimensional gap sampling

Gap schedules on a Nyquist grid having at least two dimensions
are generated by placing multiple one-dimensional sub-schedules
onto the grid, each with a different direction and offset from the
grid origin. In practice, this process is accomplished recursively,
with planes built up from vectors, cubes built up from planes,
and so forth. Initially, recursion begins on the entire grid. At each
level of recursion, sub-grids are constructed by ‘masking off’ each
available grid direction in turn and constructing the remaining
unmasked directions. For example, a three-dimensional xyz cube
will be constructed from repeated sequences of yz, xz, and xy
planes, and each xy plane will be constructed from repeated
sequences of y and x vectors. Once a round of sub-grid construction
has been performed along each direction, the sub-grid offset is
incremented and the process is repeated until no more sub-grids
remain at the current level of recursion. For a more precise defini-
tion of the recursive algorithm, see Code Listing S-1 in the Supple-
mentary Information.

Creation of multidimensional gap schedules requires a slight
modification to the fractional index, which now assumes the fol-
lowing form:

hi ¼ xi þ
PD

d¼1OdPD
d¼1Nd

ð5Þ

where Od and Nd are the origin and grid size along direction d,
respectively. Eq. (5) is referred to as ‘‘ADD” mode in the context
of Poisson-gap sampling, and effectively results in multidimen-
sional schedules that exhibit triangular forms [14]. It is worthy of
mention that, in the one-dimensional case, Eq. (5) reduces to Eq. (3).

Finally, whether the Nyquist grid is one- or many-dimensional,
a value of the global scaling factor K must be determined that
yields the desired number of sampled grid points. Our gap sam-
pling implementation, like the existing Poisson-gap method, itera-
tively rebuilds new schedules until K has been suitably optimized.
Our implementation uses a heuristic search method that adjusts K
based on the relative difference between the desired and obtained
global sampling density at each iteration.
2.3. Burst augmentation

Recent statistical descriptions of the discrete Fourier transform
have shown that the bandwidth of a nonuniformly sampled signal
is related to the greatest common factor of the gaps between sam-
pled points [19]. One proposed method of increasing bandwidth
and reducing artifacts in NUS data is to sample in multiple short
bursts having zero gap length [18]. Using gap sampling, this may
be accomplished by modulating the gap equation between zero
and its maximum value several times over the Nyquist grid, like so:

gSBðxi; dÞ ¼ K sin
p
2
hi

� �
sin2 p

4
Ndhi

� �
ð6Þ

The sine-burst gap equation gSB combines the sinusoidal
forward-biasing and minimized gap lengths of Poisson-gap sam-
pling with the minimized effective dwell time of burst-mode sam-
pling, and does not require the use of random deviates to achieve
reasonable artifact suppression.
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2.4. Expectation sampling distributions

One disadvantage of stochastic gap equations is that they pro-
vide no direct measure of how likely each Nyquist grid point is to
be sampled. While one may speculate on the approximate weight-
ing obtained by a given gap equation, quantitation of the expecta-
tion of the sampling distribution requires the construction and
averaging of a large number of sampling schedules (cf. Figs. S-2,
S-3 and S-4). Fortunately, the expectation sampling distribution
of a given gap equation may be analytically obtained by computing
the probability of sampling each point on the grid using a recursive
formula. We define an expectation sampling distribution pðiÞ that
varies over a one-dimensional Nyquist grid of N points as follows:

pðiÞ ¼
Xi�1

k¼1

pðiji� kÞ � pði� kÞ ð7Þ

where pðiji� kÞ is the probability of grid point i being emitted from
grid point i� k, which requires a gap of size k� 1:

pðiji� kÞ ¼ Prfbgði� kÞc ¼ k� 1g ð8Þ
In other words, the probability of sampling any given grid point

is the weighted sum of the probabilities of arriving at that point
from all prior points. By substituting Eq. (2) for the gap equation
into Eqs. (7) and (8), we arrive at the sampling distribution of a
one-dimensional Poisson-gap sequence:

pðiÞ ¼
Xi�1

k¼1

Kk�1

ðk�1Þ! sin
k�1 p½i�k�

2N

� �
exp �Ksin

p½i�k�
2N

� �� �
�pði� kÞ

ð9Þ
As in the case of gap sampling, the sampling distribution pro-

duced by Eq. (9) is parameterized only by the scaling factor K,
where larger values produce more forward-biased schedules. We
refer to this equation as the ‘‘expectation” Poisson-gap sampling
distribution because it describes the expected value of the proba-
bility of sampling any Nyquist grid point, and is not itself useful
for generating schedules that obey gPG. A more detailed derivation
of Eq. (9) is provided in the Supplementary Information.

2.5. Multidimensional expectation sampling distributions

Extension of Eq. (7) to compute the expectation sampling distri-
butions of stochastic gap equations in two or more dimensions fol-
lows from the fact that sampling along each direction is
independent of other dimensions within our gap sampling frame-
work. The probability of sampling any multidimensional grid point
is therefore the sum of sampling that point along each grid direc-
tion. Supplementary Fig. S-3 illustrates the expectation Poisson-
gap sampling distribution on two-dimensional Nyquist grids. It is
important to note that the Poisson-gap sampler originally pro-
posed by Hyberts et al. does not strictly follow our gap sampling
algorithm, because its sampling of each dimension is dependent
upon which points in other dimensions have been previously sam-
pled. This divergence between multidimensional Poisson-gap and
Poisson-gap constructed according to our algorithm is observed
by comparison of Figs. S-3 and S-4, and is only truly apparent at
very low sampling densities.

3. Materials and methods

3.1. Generation of deterministic schedules

Deterministic sine-gap and sine-burst schedules were con-
structed using a small C program which implements our recursive
gap sampling algorithm described above. Schedules were gener-
ated at 30%, 10% and 5% sampling densities on one-dimensional
grids having 1024 points and two-dimensional grids having
64 � 64 and 128 � 128 points. The first and third rows of Fig. 1
show the deterministic schedules resulting from gSG and gSB at
30% density on 128 � 128 grids, respectively, and Supplementary
Fig. S-5 shows the schedules at 10% and 5% density.

3.2. Generation of stochastic schedules

Poisson-gap schedules were constructed using Java source code
authored and provided by Hyberts et al. for generating multidi-
mensional schedules (http://gwagner.med.harvard.edu/intranet/
hmsIST/gensched_old.html). A small command-line wrapper was
written to provide direct access to the core schedule generation
functions without use of the graphical interface. Fifty thousand
schedules were computed at each of the sampling densities and
grid sizes listed above. Each schedule was generated with a unique,
large, odd-valued seed number to ensure the broadest possible
sampling of the PG ensemble. The second row of Fig. 1 shows an
example two-dimensional Poisson-gap schedule at 30% sampling
density. Supplementary Fig. S-5 additionally shows representative
Poisson-gap schedules at 10% and 5% density.

3.3. Spectral data collection

Experiments were conducted on a Bruker Avance III HD
700 MHz spectrometer equipped with a 5 mm inverse quadruple-
resonance (1H, 13C, 15N, 31P) cryoprobe with cooled 1H and 13C
channels and a z-axis gradient. A high-resolution 2D 1H–15N HSQC
NMR spectrumwas collected at a temperature of 298.0 K on a sam-
ple of uniformly [15N, 13C]-labeled ubiquitin in aqueous phosphate
buffer at pH 6.5. A 2D gradient-enhanced 1H–15N HSQC spectrum
with improved sensitivity [20,21] was collected with 16 scans
and 32 dummy scans over a uniform grid of 2048 and 1024 hyper-
complex points along the 1H and 15N dimensions, respectively.
Spectral windows were set to 3293 ± 4209 Hz along 1H and
8514 ± 1419 Hz along 15N. The spectrum was windowed with a
squared-cosine function, Fourier-transformed and phase-
corrected along 1H to produce a half-transformed spectrum for
IST reconstruction analysis (vide infra), and subsequently win-
dowed and Fourier-transformed along 15N to yield the ‘‘true” uni-
formly sampled 2D 1H–15N HSQC spectrum.

In addition, a 3D HNCA NMR spectrum was collected on the
same uniformly [15N, 13C]-labeled ubiquitin sample. The spectrum
was collected at 298.0 K with 16 scans and 32 dummy scans over a
uniform grid of 1024 � 64 � 64 hypercomplex points along the 1H,
15N and 13C dimensions, respectively. Spectral windows were set to
3293 ± 4209 Hz along 1H, 8514 ± 1419 Hz along 15N, and
9508 ± 2818 Hz along 13C. The spectrum was windowed with a
squared-cosine function, Fourier-transformed and phase-
corrected along 1H to produce an F3-transformed spectrum for
IST reconstruction analysis, and subsequently windowed and
Fourier-transformed along 15N and 13C to yield the ‘‘true” uni-
formly sampled 3D HNCA spectrum.

3.4. Computation of performance metrics

All computational analyses were performed using in-house
developed C programs. An implementation of the hypercomplex
algebra described by Schuyler et al. [22] was used to perform all
spectral data processing. Iterative Soft Thresholding (IST) recon-
structions of subsampled spectra were performed using the algo-
rithm described by Stern et al. [23,24]. Impulse sets were
generated for each constructed schedule by setting sampled grid
points to one and skipped grid points to zero. At each sampling
density and grid size for which schedules were created,
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Fig. 1. Comparison of sine-gap, Poisson-gap and sine-burst sampling schedules and their resulting point spread functions at varying sampling densities, indicating close
agreement between the sine-gap and Poisson-gap methods. The increased artifact intensity in the sine-gap schedule at 5% sampling density is due to slightly increased
regularity of sampled grid points, which is reduced by Poisson-gap and sine-burst sampling. Grid sizes and point spread function colorings are the log-scaled versions of those
found in Fig. 1 of [26] in order to emphasize low-intensity sampling artifacts. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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point-spread functions were calculated by hypercomplex discrete
Fourier transformation of each schedule’s impulse set. Point-
spread functions for schedules built on two-dimensional grids
are shown for each sampling density in Fig. 1. For one-
dimensional schedules, reconstruction residuals were computed
from a subset of 192 F1 traces of the half-transformed HSQC spec-
trum. The traces were nonuniformly subsampled using sine-gap,
sine-burst and Poisson-gap (N = 10,000) schedules and recon-
structed with 400 iterations of IST at a threshold level of 98%. After
reconstruction, the residual was calculated using the l2-norm of the
differences between the true and reconstructed signals. A conver-
gence analysis was also performed (Supplementary Fig. S-6) to
ensure convergence of IST to a stationary point, as measured by a
lack of decrease in the l2 error. Fig. 2A shows the distributions of
IST reconstruction residuals from the HSQC traces, and example
Fig. 2. Iterative Soft Thresholding reconstruction l2 residuals of (A) 192 1H–15N HSQC F1
densities of 30% (blue), 10% (green) and 5% (red). Residuals of sine-gap and sine-burst sch
of the references to color in this figure legend, the reader is referred to the web version
reconstructions from each sampling schedule at 5% density are
illustrated in Fig. 3. See Fig. S-7 for a version of Fig. 3 with contours
reduced ten-fold to expose low-intensity noise and reconstruction
artifacts. Reconstructions of 10 F2–F1 planes of the F3-transformed
HNCA were also performed after nonuniformly subsampling using
sine-gap schedules, sine-burst schedules, and a subset (N = 10,000)
of the generated Poisson-gap schedules. Fig. 2B shows IST recon-
struction residuals computed from the HNCA planes, and example
reconstructions from each sampling schedule at 5% density are
illustrated in Fig. 4.

3.5. Generation of peak-picking statistics

A summary of the relative HSQC peak-peaking performance for
the IST reconstructions from each sampling schedule and at each
traces and (B) 10 HNCA F2–F1 planes from Poisson-gap schedules having sampling
edules are shown as solid and dashed vertical lines, respectively. (For interpretation
of this article.)



Fig. 3. Uniformly sampled (A) and IST reconstructed (B–D) 2D 1H–15N HSQC spectra of ubiquitin, indicating nearly equivalent performance of all three gap sampling methods
at low (5%) sampling density. Spectra shown in (B) through (D) were reconstructed from nonuniformly subsampled copies of (A) using (B) Poisson-gap, (C) sine-gap and (D)
sine-burst methods, respectively. All spectra are plotted with identical contour levels. For a rendering of the same spectra at very low contour levels, refer to Supplementary
Fig. S-7.

Fig. 4. Uniformly sampled (A) and IST reconstructed (B–D) 3D HNCA spectra of ubiquitin at low (5%) sampling density, projected along the 15N dimension. Spectra shown in
(B) through (D) were reconstructed from nonuniformly subsampled copies of (A) using (B) Poisson-gap, (C) sine-gap and (D) sine-burst methods, respectively. While sine-gap
sampling (C) fails to adequately reproduce the spectrum due to its high sampling coherence, sine-burst sampling yields an essentially identical result to Poisson-gap
sampling. All spectra are plotted with identical contour levels.

B. Worley, R. Powers / Journal of Magnetic Resonance 261 (2015) 19–26 23
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sampling density is listed in Table 1. For each 2D 1H–15N HSQC
spectrum of ubiquitin reconstructed via Iterative Soft Thresholding
(IST) at each sampling density and each sampling method, a set of
quality statistics was computed. Peak lists were generated using
the peakHN.tcl utility provided by NMRPipe [25], with a minimum
intensity threshold of 3.0 � 107. Then, a greedy algorithmwas used
to generate maximum-cardinality bipartite matching between the
peak list of each reconstructed spectrum and the peak list of the
true spectrum. Chemical shift windows of 0.015 ppm and
0.08 ppmwere used along the 1H and 15N dimensions, respectively,
during matching. The number of peaks matched, lost and gained in
the reconstructed spectra, relative to the true spectrum, were all
counted. Lost peaks were any picked peaks in the true spectrum
that had no match in the reconstruction. Gained peaks were any
picked peaks in the reconstruction with no partner in the true
spectrum. The intensities of all matched peaks in each reconstruc-
tion were then compared against their true intensities through the
computation of a Pearson correlation coefficient, rint , which effec-
tively summarizes the linearity of the reconstruction algorithm
as a function of sampling schedule. Finally, root-mean-square
chemical shift deviations of all matched peaks along the 1H dimen-
sion ðdHÞ and the 15N dimension ðdNÞwere also computed. Identical
procedures and parameters, with the exception of an intensity
threshold of 6.0 � 108, were used to peak-pick 1H–15N projections
of the uniform and reconstructed HNCA spectra (cf. Table 2).
3.6. Analysis of sampling distributions

Expectation sampling distributions were also generated from
the set of Poisson-gap schedules by averaging their resulting
impulse sets. Supplementary Fig. S-2 shows the expectation sam-
pling distributions for one-dimensional schedules having different
sampling densities, and Supplementary Figs. S-3 and S-4 show the
Table 1
Summary of peak-picking performance figures produced from comparing IST-
reconstructed subsampled 2D 1H–15N HSQC spectra of ubiquitin with their true
original uniformly sampled spectrum.

Method Matched Lost Gained rint dH (ppm) dN (ppm)

PG 30% 99/99 0/99 2 0.9994 0.000724 0.004459
10% 99/99 0/99 4 0.9983 0.001208 0.008316
5% 98/99 1/99 8 0.9920 0.001430 0.009398

SG 30% 99/99 0/99 0 0.9996 0.000580 0.005957
10% 98/99 1/99 6 0.9983 0.001546 0.007809
5% 98/99 1/99 7 0.9939 0.001660 0.011393

SB 30% 99/99 0/99 1 0.9996 0.000534 0.008977
10% 98/99 1/99 5 0.9981 0.001071 0.010007
5% 98/99 1/99 7 0.9699 0.001482 0.013357

Table 2
Summary of peak-picking performance figures produced from comparing IST-
reconstructed subsampled 2D HNCA 1H–15N spectral projections of ubiquitin with
their true original uniformly sampled spectral projection.

Method Matched Lost Gained rint dH (ppm) dN (ppm)

PG 30% 73/74 1/74 0 0.9978 0.000532 0.007556
10% 70/74 4/74 0 0.9905 0.001176 0.015378
5% 66/74 8/74 0 0.9745 0.001488 0.015092

SG 30% 73/74 1/74 0 0.9955 0.000585 0.010554
10% 66/74 8/74 1 0.9864 0.001793 0.016878
5% 64/74 10/74 0 0.9638 0.001903 0.020252

SB 30% 73/74 1/74 0 0.9977 0.000560 0.010475
10% 69/74 5/74 0 0.9883 0.001311 0.015739
5% 66/74 8/74 1 0.9781 0.001852 0.017306
distributions for two-dimensional schedules having the same den-
sities. The heavy bias towards early time points in Poisson-gap
sampling is reaffirmed in all figures. Sampling distributions were
also computed via Eq. (9) for comparison to the distributions
obtained by averaging multiple impulse sets (Figs. S-2 and S-3).
To verify that fully random sampling from Eq. (9) and gap sampling
from gPG are not equivalent, 10,000,000 sampling schedules were
generated by rejection sampling 51 grid points from Eq. (9) at
K ¼ 62:9 and N ¼ 1024, and histograms of the gap lengths at each
grid point were computed (Supplementary Fig. S-8). If the two
methods were indeed equivalent, one would expect the histograms
in Fig. S-8A to resemble Poisson distributions (S-8B).
4. Results

While at first glance, the deterministic schedules constructed
using gSG in Figs. 1 and S-5 may appear unrelated to the Poisson-
gap schedules, they are in fact realizations of Poisson-gap sampling
in which all random draws from the underlying Poisson distribu-
tion have resulted in the expected value. This fact is corroborated
by the corresponding point-spread functions, which closely resem-
ble those of the stochastic example at 30% and 10% sampling den-
sity. Reconstruction residuals from IST (Fig. 2) also reveal a high
similarity between the deterministic sine-gap and stochastic
Poisson-gap schedules at 30% and 10% sampling density. However,
the sine-gap PSF becomes less comparable to that of Poisson-gap at
low sampling densities, where the benefits of incoherent sampling
are more apparent. It is worth noting that the striking appearance
of sampling artifacts in the sine-gap PSF is a consequence of the
log-scaled color gradient used in Fig. 1, which was necessary in
order to visually expose very low-intensity artifacts.

The addition of burst augmentation in the form of gSB does not
substantially alter IST reconstruction residuals relative to gSG and
gPG. However, artifacts arising from regularity in gSG-based sched-
ules at low sampling densities are diminished by burst augmenta-
tion, resulting in point-spread functions that more closely
resemble those from stochastic Poisson-gap sampling. This reduc-
tion of artifacts by burst augmentation comes at a small cost, as
low-frequency spurs are introduced into the sine-burst point
spread function (Supplementary Fig. S-9) by modulating the gap
equation. However, these spurs are low in magnitude and only
readily apparent at very low (5%) sampling density. These spurs
could potentially be reduced by burst-modulating each dimension
in the schedule by a different factor.

IST residuals of sine-burst schedules (Fig. 2, dashed lines) are
slightly greater than those of one-dimensional sine-gap schedules
and dense two-dimensional sine-gap schedules, but they improve
relative to sine-gap as sampling density is decreased. Therefore,
while sine-gap sampling is a valuable tool for understanding the
nature of Poisson-gap sampling, it is clearly bested in performance
by multidimensional sine-burst sampling as global sampling den-
sity is decreased. Burst augmentation re-introduces sampling inco-
herence into highly coherent sine-gap schedules to produce sine-
burst schedules that more closely resemble Poisson-gap sampling
schedules (Supplementary Fig. S-5). This added incoherence is
clearly evident in the 1H–13C projections of reconstructed HNCA
spectra (Fig. 4), where the more incoherent sine-burst schedule
yields a more faithful spectral reconstructions than sine-gap
schedule can.
5. Discussion and conclusions

We have shown that Poisson-gap sampling is a single instance
in a class of gap sampling methods that may or may not be defined
stochastically. Using a well-defined gap sampling algorithm, we
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have described two new deterministic sampling methods: sine-gap
and sine-burst sampling, which do not rely on random deviates
and have comparable performance to stochastic Poisson-gap sam-
pling according to IST reconstruction residuals. From a practical
perspective, Poisson-gap, sine-gap and sine-burst sampling meth-
ods produced nearly equivalent HSQC spectra (Figs. 3 and S-7) that
yielded essentially identical information (chemical shifts, peak
intensities) as highlighted in Table 1. Poisson-gap and sine-burst
sampling also produced nearly equivalent HNCA spectra (Fig. 4)
after IST reconstruction, even at low sampling density. Table 2 also
summarizes the peak-picking statistics collected on 1H–15N projec-
tions of the reconstructed HNCA spectra. For the practicing spec-
troscopist, this equates to the ability to nonuniformly sample at
the performance level of Poisson-gap, without specifying a pseudo-
random seed. We find gap sampling to be a flexible and attractive
alternative to traditional probabilistic sampling methods that use
probability densities to define the local sampling density over a
Nyquist grid. In effect, gap sampling approaches the problem of
local sampling density from the opposite direction of probabilistic
sampling by defining the distances between samples on the grid.
We have also derived the mathematical connection between
stochastic gap equations and their expectation sampling distribu-
tions as a means of directly visualizing the grid-point weighting
produced by a given gap equation. While these expectation sam-
pling distributions are useful in describing the average sampling
behavior of a stochastic gap equation, they do not provide a means
of converting a gap-based sampling method into a fully random
sampling method. In other words, we have shown that any method
of constrained random sampling using a gap equation is inequiva-
lent to fully random sampling from its corresponding expectation
sampling distribution.

Finally, burst augmentation provides a concrete example of
how deterministic gap sampling may be tuned to behave in a sim-
ilar fashion to pseudorandom numbers. At first glance, the third
rows of Figs. 1 and S-5 would appear to have been generated
stochastically, but they are a consequence of the squared-sine
modulation term in gSB. It has historically been true that stochasti-
cally generated sampling schedules produced fewer prominent
artifacts than deterministic methods such as radial or spiral sam-
pling, due to high regularity (i.e. coherence) of the latter schemes.
However, burst augmentation demonstrates that pseudorandom
variates are not strictly required for producing incoherent sam-
pling methods. Furthermore, while most pseudorandom number
generators are indeed deterministic for a given seed value, this
determinism is inherently different from the determinism offered
by sine-gap and sine-burst sampling. By design, any parameter
(e.g., reconstruction residuals) measured from pseudorandomly
generated sampling schedules will not be smoothly varying –
and therefore optimizable – functions of their random seed value.
As a consequence, no absolute guarantee of spectral quality is pro-
vided to the spectroscopist employing pseudorandom sampling
schedules, even if the relative difference in quality between the
best- and worst-performing Poisson-gap seed values is small at
sampling densities above 30% (Fig. 2). This problem with seeds
has already been recognized: Poisson-gap and jittered sampling
methods are, in fact, two separate attempts at minimizing – but
not removing – the effect of seed values on schedule performance
[9,10,13]. Deterministic gap sampling completely frees the user
from specifying an arbitrary seed value, and provides a highly gen-
eral framework that enables further investigation into which fea-
tures of NUS schedules yield higher-quality reconstruction results.

Our C implementations of Poisson-gap, sine-gap and sine-burst
sampling are free and open source software, and are available for
download at http://bionmr.unl.edu/dgs.php. The programs are
highly portable and C99-compliant, so they may be compiled on
any modern operating system. An online schedule generation tool
is also provided at the same address for rapid generation of one-,
two- and three-dimensional NUS schedules suitable for direct
use on Bruker or Agilent spectrometers. As defined and imple-
mented, our recursive schedule generation algorithm is not limited
to any number of grid dimensions. However, we have limited the
online tool to three-dimensional grids to minimize server load.
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