

lere des

"Building the plane while flying it: Scaling autologous cell therapy

Philip G. Vanek, Ph.D. GM Cell Therapy Technologies GE Healthcare

MEASUREMENT CHALLENGES FOR CAR-T BIOMANUFACTURING

Imagination at work

Translational Research

- Mentor driven learning
- Deep workflow understanding
- Self-sufficiency FIO
- □ Foster creativity
- Collaborate
- □ Share results through publication

The Young Apprentice, Stanhope Alexander Forbes

Industrial cGMP manufacturing is based on Scientific Management

- Deep workflow understanding
- ➡ Self-sufficiency FIO
- ➡ Foster creativity
- ➡ Share results through publication
- Process measurement and management
- Attention to detail
- Process excellence is separate from manufacturing

Frederick Winslow Taylor (1856 – 1915)

"[A laborer] shall be so stupid and so phlegmatic that he more nearly resembles in his mental make-up the ox than any other type...he is so stupid that the word "percentage" has no meaning to him..."

Process development requires deep process understanding and control

You can't manage what you can't measure Peter Drucker

Commercialization requires process control and measurement

How far away are we?

Generic Workflow

- Repurposing bioprocess tools, blood processing tools, and/or basic research platforms
- Complex non-turnkey systems, limited standardization
- Poor interconnectivity of workflow components
- Poor IT connectivity across workflow
- Scalability \rightarrow regulatory implications
- Etc.

Scale manufacturing process in a controlled way for large patient populations

Industry is actively working towards solving these problems

New systems are being designed to derisk process and provide closed, in process monitoring

What happens when 50B Machines become digitally connected?

Application 1: In silico process learning and monitoring

Hypothetical process simulation model

Simulation: practically applied

Scenario: labor limited

Application 2: Process analytics in the cell therapy workflow

Application 3: Patient specific cell therapy – alignment of care and production pathways

Bridge@CCRM, a \$40 mio CAD investment to improve cell therapy manufacturing

- Technologies custom designed for cell therapy manufacturing
- Closed, disposable platforms
- Simple operation for manufacturing environment
- Flexible volumes
- Fully configurable for process development

- Connectivity of unit operations through closed "liquid circuitry"
- Process sensing and automation
- Predictive modeling and capacity planning
- Infrastructure development and implementation

- Driving collaboration across the industry
- Enabling efficient manufacturing workflows
- Connecting manufacturing and care pathways
- Solving complex problems in partnership
- Evolving new technology platforms

Enabling a cell therapy industrial ecosystem

Summary

- Clinical development and industrialization is occurring in lock-step but have very different metrics
 - Desperate need for process development understanding
 - Improved process measurement and management
- Process risk can be minimized by:
 - Simplifying processes
 - Designing new unit operations
 - Connecting
 - Digitizing
- Digital integration can be a powerful tool for process and facility design and optimization
- Smart analytics will lead to better and safer medicines
- Autologous cell therapy manufacturing and care pathways are converging

"I find out what the world needs, then I proceed to invent it." -Thomas Edison

