EFFECT OF N-TERMINAL METALATION AND LIPID COMPOSITION ON THE ACTIVITY OF ANTIMICROBIAL PISCIDINS IN MEMBRANES

Roderico Acevedo1, Frank Heinrich2, Vitalii Silin2, Ananda Chowdhuri3, Alexander Greenwood3, Myriam Cotten3 and Ella Mihaiasu2
1Institute for Bioscience and Biotechnology Research, College Park, Maryland
2NIST Center for Neutron Research, Gaithersburg, Maryland
3College of William and Mary, Williamsburg, Virginia

Introduction

Metal-binding host-defense peptides derived from the innate immune systems of various organisms are promising templates for designing new and potent antibiotics. In this study, piscidin 1 and 3 (P1 & P3) isolated from Hybrid striped bass (Morone chrysops x Morone saxatilis) are Helix-like-rich, amphipathic, cationic, α-helical with a broad-spectrum antimicrobial activity (1). It was recently established that Cu2+ and Ni2+, coordinated through an amino-terminal Copper-Nickel (ATCUN) motif in piscidins 1 and 3, enhances their antimicrobial activity. We seek to understand how microscopic observations macroscopic measurements on their activities are connected with structural observation on the molecular scale, starting at the lipid membrane barrier. Here we combine cell-based assays with a suite of high resolution structural techniques to examine the interactions of the peptide with the lipid membrane at the molecular and the role of metal ions in altering these interactions with the result of enhanced efficacy.

Peptide structures in lipid bilayers

Figure 1. Solid state NMR structures of Piscidins 1 and 3 with and without Nickel-II. They structures were resolved in aligned lipid multilayers of DMPG/DMPG (s1, molar). The metals (Cu2+ or Ni2+) bind in the histidine N-terminal region (ATCUN motif). The Ni2+ ion (green sphere) is coordinated to the backbone nitrogens of F1, I2, and H3 as well as the imidazole sidechain of H3 in a square-planar geometry (2). Unlike previously reported ATCUN-metal structures, the side chain of the conserved His-4 in piscidins appears to also participate in the metal binding. In the halide-state, metal coordination through the ATCUN motif results in the net loss of a positive charge and a partial loss of helical content.

Piscidin activity on cancer cells

Figure 2. Piscidin P1 induces necrosis of HT1080 cancer cells. Control (untreated) cells show a smooth surface, while cells treated with P1 reveal severely damaged cellular membranes. Stained with propidium iodide (PI).

Figure 3. Cytotoxicity of P1 and P3 on a lung cancer cell line (A549). Both peptides show excellent cell killing property in the concentration tested, however P3 is more potent than P3. Interestingly, Cu2+ binding restores the efficacy of P3, to a concentration range comparable to P1.

Figure 4. From Sposomes to oriented bilayers. Piscidins are allowed to incorporate into whole phospholipids in aqueous buffer, and then fused to glass cover slips to form flat bilayer stacks, amenable for diffraction measurements. The samples are hydrated at 90-95% relative humidity from the vapor phase.


Figure 5. The bilayer scattering length density profiles (SLD) in projection to the bilayer normal (z-axis). The oriented samples were prepared in POPC at 1:2.5 peptide/lipid molar ratio. The more potent P1 is more deeply buried in the hydrocarbon core of the bilayer, compared to the less potent homolog, P3. However, Cu2+ binding in the ATCUN motif increases P3’s ability to insert. The depth of insertion correlates directly with the cytotoxicity of P1/P3 on cancer cells, and in particular, the observed gain in potency of P3 upon metal binding (Fig 3). Peptide insertion associates with bilayer distortions and water penetration in the bilayer interior, compromising the integrity and functionality of the membrane barrier.

Figure 6. In a binary POPC/cholesterol mixture (1:1 molar ratio) Piscidins cause a phase separation into two lipid phases: a cholesterol-rich, liquid ordered phase (C), and a lipid liquid disordered phase (L). While both P1 and P3 partition into the L-phase, P1 produces more severe perturbations to the POPC (L) bilayer structure, as inferred from the electron density profiles (ED, right panel). The bilayer thicknesses including the water layer are S1.05 Å (0.086) for L-P1, S1.52 Å (0.10) for L-P3 and S3.87 Å (0.02) for neat POPC.

Surface Plasmon Resonance (SPR) and Electrical Impedance Spectroscopy (EIS)

Figure 7. Simultaneous SPR/EIS measurements were performed on TBLMs treated with 3 μM P1/P3. While both peptides exhibit similar binding kinetics (by SPR) in both apo- and holo-forms, the bilayer conductance (by EIS) is much higher for P1 than P3, indicating that P1 is more aggressive in forming defects or peptide channels through an otherwise insulating bilayer. The conductance is exacerbated for both P3 and P3 when Cu2+ is bound. Because the kinetics of binding stays roughly unchanged, the differing activities of P1/P3 must rely on their unique interactions with the bilayer’s the hydrocarbon region.

Figure 8. The peptides were injected upon a pre-formed TBLM, at a concentration of 3 μM in 20mM Tris buffer , pH 7.5. The profiles reveal a higher density of P1-Cu across the hydration and a more even peptide distribution between the two bilayer leaflets compared to P3-Cu. The somewhat lower incorporation of P3 and the higher density of acclimation on the outer leaflet may be indicative of a lower ability to cross the hydrocarbon barrier, in agreement with observations from cell-based assays (Fig 3), neutron diffraction (Fig 5) and EIS measurements (Fig 7).

Neutron Reflectometry of TBLMs with Piscidins

Figure 9. The peptides were injected upon a pre-formed TBLM, at a concentration of 3 μM in 20mM Tris buffer , pH 7.5. The profiles reveal a higher density of P1-Cu across the hydration and a more even peptide distribution between the two bilayer leaflets compared to P3-Cu. The somewhat lower incorporation of P3 and the higher density of acclimation on the outer leaflet may be indicative of a lower ability to cross the hydrocarbon barrier, in agreement with observations from cell-based assays (Fig 3), neutron diffraction (Fig 5) and EIS measurements (Fig 7).

Summary

The two 22-residue, helical, cationic peptides differ only slightly in amino-acid sequences, but P3 is more potent than P3. Solid state NMR showed that P1 and P3 adopt a very similar helical structure in fluid lipid membranes. However, neutron diffraction and reflectometry, in conjunction with electrical impedance spectroscopy (EIS) measurements reveal differing conformations of the two peptides in membrane, depending on lipid composition and peptide metalation state. While (Cu2+) metal binding triggers an increase in the potency of the peptides on cancer cells, it is more dramatically manifested in P3. These changes in potency can be directly correlated with the changes in the peptide conformations and depth of insertions in the membrane barrier. The contrasting behavior of the two AMP homologues offer a unique opportunity to examine the structure-function relationship of ATCUN HDs.

Acknowledgments

This research was supported from the National Science Foundation, award #1546544. The study utilized neutron diffraction facilities at the US National Institute of Standards and Technology (NIST), Gaithersburg, MD. The distribution of any commercial product or trade name does not imply endorsement or recommendation by NIST. We thank Dr. William Stetter-Stevenson (NIST) for providing the facilities for performing cell cancer assays.

References


Figure 5. The bilayer scattering length density profiles (SLD) in projection to the bilayer normal (z-axis). The oriented samples were prepared in POPC at 1:2.5 peptide/lipid molar ratio. The more potent P1 is more deeply buried in the hydrocarbon core of the bilayer, compared to the less potent homolog, P3. However, Cu2+ binding in the ATCUN motif increases P3’s ability to insert. The depth of insertion correlates directly with the cytotoxicity of P1/P3 on cancer cells, and in particular, the observed gain in potency of P3 upon metal binding (Fig 3). Peptide insertion associates with bilayer distortions and water penetration in the bilayer interior, compromising the integrity and functionality of the membrane barrier.

Figure 6. In a binary POPC/cholesterol mixture (1:1 molar ratio) Piscidins cause a phase separation into two lipid phases: a cholesterol-rich, liquid ordered phase (C), and a lipid liquid disordered phase (L). While both P1 and P3 partition into the L-phase, P1 produces more severe perturbations to the POPC (L) bilayer structure, as inferred from the electron density profiles (ED, right panel). The bilayer thicknesses including the water layer are S1.05 Å (0.086) for L-P1, S1.52 Å (0.10) for L-P3 and S3.87 Å (0.02) for neat POPC.