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! Complex, multi-functional materials for emerging devices  
 1. Beyond silicon: cognitive devices for low power computing 
 2. Spintronic devices: novel phenomena involving electron spin currents 
 3. 3D devices: e.g. Racetrack Memory – a current controlled shift register 

 
! Requires combination of deep understanding, advanced theoretical 

models, computational exploration & analytics and experimental verification 

! Useful devices require materials optimized for many distinct properties 
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Evolution in World’s Compute Capacity 

Hilbert et al. Science (2011) 
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“Volume. As of 2012, about 2.5 exabytes of data 
are created each day, and that number is doubling 
every 40 months or so. More data cross the internet 
every second than were stored in the entire internet 
just 20 years ago. This gives companies an opportunity 
to work with many petabyes of data in a single 
data set—and not just from the internet. For instance, 
it is estimated that Walmart collects more than 2.5 
petabytes of data every hour from its customer 
transactions. A petabyte is one quadrillion bytes, or 
the equivalent of about 20 million filing cabinets’ 
worth of text. An exabyte is 1,000 times that amount, 
or one billion gigabytes.” 

 “Big Data: The Management Revolution”, McAfee and 
Brynjolfsson, Harvard Business Review, October 2012 

Big Data 
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Jinha, A. E. Learned Publishing 2010, 23, 258-263. 

Accessible Scientific Data 
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Jinha, A. E. Learned Publishing 2010, 23, 258-263. 

Accessible Scientific Data 

Most data is “locked”  
!  In thousands of distinct journals 
! Not in open source journals 
! Not in searchable formats e.g. figures and tables 
! Similarly, difficult to extract useful data from patent literature 
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Jinha, A. E. Learned Publishing 2010, 23, 258-263. 

Accessible Scientific Data 

MGI: provide access to materials data 
! via a “MGI” social network  

! Need to “map” the Materials Genome with the help of all scientists 
! Need access to failures as well as successes! 

! experiments that failed are just as important as those that worked 
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Analytics for accelerated materials discovery 

Time 

C
om

pl
ex

ity
/ S

iz
e 

Today 

Simple models 
to Valid experimental  

results 

Predictive models  
To Predict experimental  

outcome 

Complex models 
to Predict material 

properties 

Large scale 
simulation  

to Design materials 

Experts’ knowledge 
to develop and test 

hypothesis 

Domain specific 
search tools 

to harvest 
knowledge base 

Big data / 
analytics tools 
to enable search 
and analysis at 

scale 

Deep analytics 
to support discovery 

and innovation in 
the domain 

HPC Simulation 
 
 
 
 
 

+ 
 

Domain-specific 
Analytics 

 
 

= 
 

Accelerate Materials 
Innovation 



© 2012 IBM Corporation 8 Stuart Parkin – Materials Genome Initiative Workshop 2 July 2013 

Giant Magnetoresistance (GMR)  
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Magnetic engineering at the atomic scale  

Spin-valve 
GMR sensor 

+ interface  
engineering to 

optimize transport 

+ Artificial 
Antiferromagnet to 
engineer magnetics 
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! oscillatory interlayer 
coupling mediated by 
atomically thin Cu layers 
 
! oscillation periods 
ranging from 5 to 12 Å 
  
! oscillation periods 
could be foreseen from 
Fermi surface topology  
 

Parkin et al, Phys. Rev. Lett. 66, 2152 (1991) 

Polycrystalline 

Single crystalline 

Oscillatory Giant Magnetoresistance (GMR)  

! Peaks in GMR when AF 
coupling via Cu layer 
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Periodic Table of Oscillatory Exchange Coupling Strengths 

Parkin, Phys. Rev. Lett. 67, 3598 (1991) 
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-  Strength of interlayer coupling 
could not be predicted without a 
detailed understanding of 
underlying physics 

-  Interfacial property 

! Analytical models are very 
important! 
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Thin-film materials exploration 

1992-1995: S-System  
 6 magnetron sources 
 1 oxidation source 
 max deposition temp: 550 C 

      ~82,000 films 
      ~$100,000 
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Thin-film materials exploration 

1997-1999: A system 
       9 magnetron sources 
       5 ion beam sputter targets 
       max deposition temperature: 550 C 
       ~52,000 films 
       ~$400,000 
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2003-2010: PLD TEON System 
     34 magnetron sources 
     12 ion beam targets 
       5 PLD sources 
     35 evaporation sources 
   4+3 ebeam sources  
   max deposition temp: >1500 C 
   ~5,000 films 
   ~$10,000,000 

!  Increasingly complex, multi-
functional materials requires more 
complex fabrication capabilities 

! MGI needs to support such facilities 
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Magnetic Memory & Storage 

VA 
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JA 
MT 

MA 
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CA PC 

Magnetic Random 
Access Memory  

IBM-IFX 16Mbit MRAM   

Read Heads – Disk Drives 

Magnetic Tunnel  
Junction 

Massive storage capacity  
! Very cheap 
! But slow and unreliable! 

Fast reading and writing 
!  High performance 
!  Good endurance 
! High cost 

New materials for MTJ needed 
!  Extant materials (CoFeB/MgO) suitable to ~30 nm node 
!  Need materials with higher magnetic anisotropy for 10 nm node  
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GMR 

! Huge room temperature TMR values in MTJs useful for  
memory and sensing applications using CoFe(B) / MgO 

~220% in 2001-2002: ! 400-600% today! 
 [Parkin et al. Nature Mater. (2004); Yuasa et al. Nature Mater. (2004)] 

TMR 

MR(%) 

Year 

Giant Magnetoresistance – materials evolution 
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Diamond ZnS           Heusler XYZ C1b         X2YZ L21 
 

Graf, Felser, and Parkin, IEEE Trans. Magn. 47, 367 (2011)  
Graf, Felser, and Parkin, Prog. Solid State Chem. 39, 1 (2011) 

Heusler Compounds 
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Kübler et al., PRB 28, 1745 (1983) 
Galanakis et al., PRB 66, 012406 (2002) 

Example: Co2MnSi 
#  magic valence electron number:  24 
#  valence electrons = 24 + magnetic moments 
Co2MnSi: 2x9 + 7 + 4 = 29  Ms = 5�B 

X2YZ 

EF 

+e- 

Heusler compounds ! Half-metallic ferromagnets 
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J ≈ 1 – 100 MA/cm2  

J ≈  ― αMsHUd 
ħg 
e 

 
Shopping list for STT devices  
Switching by current 
#  High spin polarization 
#  High Curie temperature, TC 
#  low magnetic damping 
#  low saturation magnetization 
#  high perpendicular anisotropy 

MRAM! ferromagnet electrode materials 
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Magnetic Racetrack Memory 

Parkin, US patents 6834005, 6898132 
Parkin et al., Science 320, 190 (2008) 
Parkin, Scientific American (2009) 

Shift 
pulse 

0 0 0 1 0 1 0 1 

Writing 

Shifting MTJ 

Reading 

0 1 0 0 0 1 0 1 

Write 
pulse 

- A novel three-dimensional 
storage class memory  

- The capacity of a hard disk 
drive 

- The capacity of a FLASH 

•  Bits = Domains in the tracks 

Vertical 
Racetrack 

Horizontal Racetrack 

July 2, 2013 
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Racetrack Memory 2.0 

! 20 domain walls moved in lock step with current pulses 
! High velocity at low current density 

!  Narrow domain walls 
!  Very thin racetracks  
  – writing domain walls possible with SHE, Rashba, STT 
 
! Remaining problem: magnetostatic coupling between domain 
walls solved by using a “synthetic antiferromagnet (SAF)” 
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Ryu et al. Nature Nano. (6- 2013) 
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Spin Hall Effect: due to spin orbit coupling from Pt 

'!Spin!orbit!coupling!effect!from!current!flowing!in!Pt!layer!leads!to!Spin!Hall!Effect!

When!current!flows,!
spin!accumulates!on!

the!edges!and!surfaces!
of!the!Pt!layer!

Spin!polarizaEon!in!Pt!
induces!torque!on!
adjacent!Co!layer!

Effect!on!adjacent!
layers!depends!on!!

Pt'Co!order!

! Magnitude!of!SHE!has!both!intrinsic!and!extrinsic!origins!
! MGI!very!important!to!quickly!idenEfy!materials!with!large!SHE!

! Use!of!Inverse!SHE!could!lead!to!novel!cheap!energy!harvesEng!devices!(Saitoh/!
NEC)!
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1/ speed 

July 2, 2013 

Silicon versus biology! 

1/
 p

ow
er

 

x 106  ! 

!106 performance/ energy gap between CMOS and biology!  
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Computers and the Brain are Dramatically Different 

 
Integrates memory and processor 
 
Parallel, distributed processing  
 
Event-driven, low active power 

Does �nothing� better, low passive power 
 
Learning system, reconfigurable, fault-tolerant 
 
Substrate and pattern recognition 
 

 
Separates memory and processor 

Sequential, centralized processing 
 

Ever increasing clock rates, high active power 

Huge passive power 
 

Programmed system, hard-wired, fault-prone  
 

Algorithms and analytics  
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Tuning the electronic properties of complex oxides 

Charge carrier modulation by electric field effect gating 

July 2, 2013 

Illustration of the zero 
temperature behavior of 
various correlated 
materials as a function of 
sheet charge density. 
 
Anh et al., Rev. Mod. Phys. (2006) 
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Ionic liquid gating ! electric field migration of oxygen 

-  IL gating effect similar for VO2 films grown on Al2O3 and TiO2 

!

Ionic liquids provide 
for very high 
electric field at 
insulator interfaces 
! electrostatic? 
!  Induces flow of 

ionic currents 
associated with 
migration of 
oxygen to/fro 
surface 
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Liquid Electronics 

Use nanofluidic techniques to 
deliver ionic liquids 
!  “paint” electronic circuits 
!  reconfigurable electronics 
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&  Useful materials are complex with a suite of properties that must be met for a given 
application 

! Often promising materials have unforeseen failure mechanisms 

&  Interfaces between materials often have very different properties from the constituent 
materials 

!  Inorganic/organic interfaces have very interesting functionalities 

!  Non-equilibrium materials highly interesting and can be stabilized in thin film form 

&  Transport properties highly dependent on defects e.g. structural, morphological.. 

! Generation of spin currents highly useful for sensor, memory, logic and energy harvesting 

&  Systems of devices may behave very differently from individual devices 

! Need systems approach to inverse design/ engineer individual devices 

&  Cognitive devices highly important for future low-energy computing  

!  Use of ion currents allows for ultra low energy devices 

&  MGI most useful for evolutionary rather than revolutionary materials? 

&  Need investments in exploratory thin film deposition systems allowing for multiple deposition 
techniques 

! Outcome: computing devices that operate at 1,000,000 x less energy and think differently! 

 

Accelerated Materials Discovery - Comments 
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Accelerating Materials Discovery: Materials Analytics 

&  During the past century nearly all disruptive advances in science and 
technology resulted from the discovery of a new material. 

&  Major challenges addressing the world today, including sustainability, 
energy, climate, and health can only be solved by the discovery of new 
materials or artificially structured nano-materials or composites that 
address well-defined requirements.   

&  Advances in analytics and modeling and simulation suggest that we are at 
a truly disruptive juncture where computing power combined with advanced 
modeling and materials expertise and data-mining and data-verification 
could lead to accelerated computational materials discovery with dramatic 
world-wide impact. 

&  Data-mining of all extant literature to unearth materials properties and 
characteristics and advanced computational techniques to verify these 
properties would lead to an unprecedented encyclopedic database of material 
properties of tremendous value, which would form the basis for computational 
materials discovery. 

&  Challenge encompasses a vast skillset, ranging from the physical to the 
mathematical and computational sciences. 


